

OMICS and Precision Medicine - Full Workflows for Lipidomics and Metabolic Profiling

Jeremiah D. Tipton, Ph.D. Account Manager TN & MS

The Promise of Quantitative Systems Biology

Human Health

 Biomarkers will help monitor wellness, detect early disease, monitor disease progression, and stratify patients for more tailored care.

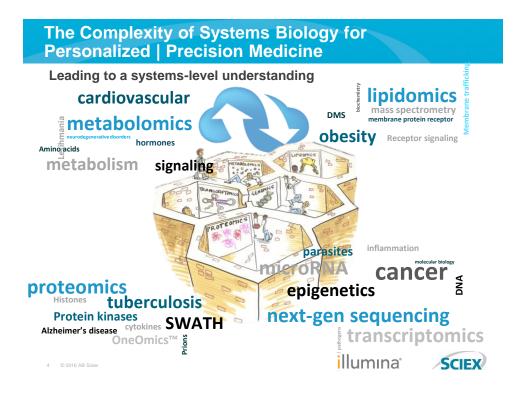
Agriculture and Food

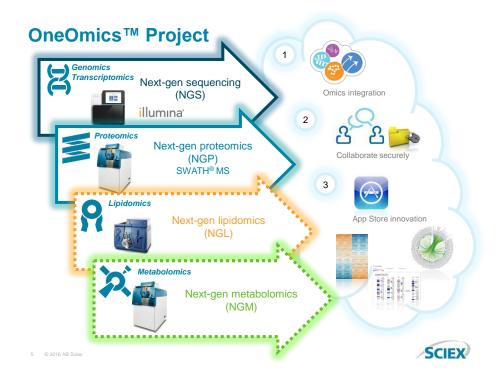
 Bioengineering of key crops will enable the optimization of production, nutrition, taste, durability, and resistance to infectious agents.

Energy and Environment

 Bioengineering based on a systems level knowledge for the development of alternative bioenergy sources and improved carbon sequestration.

illumina


The Challenges in Systems Biology

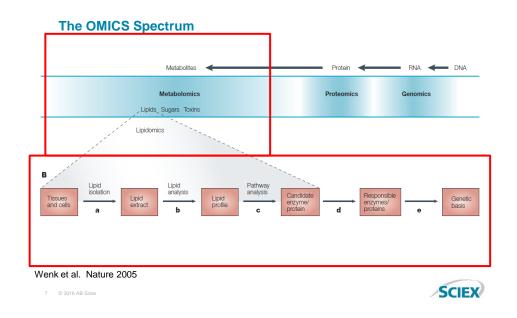

Today's biomarker discovery	Tomorrow's personalized medicine
Omics data are information rich and context dependent	NEED to compare complex biological results from diverse technologies
Vast amounts of omics data are generated by different labs	NEED to integrated environment to combine, compare, and share results

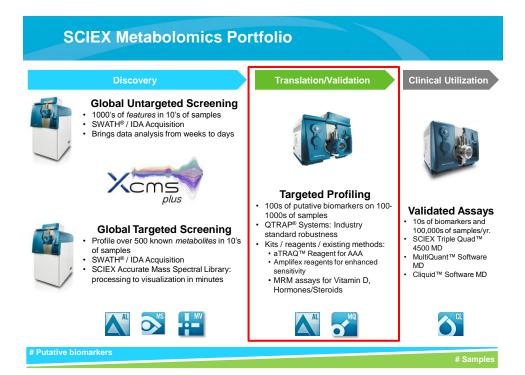
3 © 2016 AB Sciex

illumına[:]

SCIEX

OMICS Technologies


The OMICS Spectrum


Discovery Targeted	Metabolites	Protein 🗲	- RNA 🔶 DNA
	Metabolomics	Proteomics	Genomics

Wenk et al. Nature 2005

OMICS Technologies

Applications FluxOMICS and Pathways

Targeted Metabolomics - FluxOMICS

Quantitative and Qualitative Metabolomics for the Investigation of Intracellular Metabolism

Targeted Analysis on the QTRAP® 5500 System and Reverse-Phase Ion-Pairing Chromatography

Douglas McCloskey¹ and Baljit K. Ubhi² ¹Department of Bioengineering, University of California, San Diego, CA, USA, ²SCIEX, USA

Liquid chromatography-mass spectrometry (LC-MS) provides a powerful analytical tool for understanding and monitoring intracellular metabolism by measuring the metabolome. The study of intracellular metabolism of model organisms, such as *E* coli, is vital to further our biochemical knowledge¹, to develop new pharmaceuticals that target harmful pathogens², and to improve industrial applications that aim to metabolically engineer bacteria in order to produce commodity chemicals from renewable resources3. Paramount to these endeavors is the ability to reliably and accurately measure the intracellular metabolome. For microorganisms, the compounds of most interest comprise intermediates of high flux pathways such as glycolysis, the pentose phosphate pathway, the citric acid cycle amino acid metabolism, as well as energy and redox cofactors such as ATP and NADH (Figure 1). By measuring the absolute metabolite levels of such compounds, one is able to calculate reaction and pathway thermodynamics⁴ and infer in vivo enzyme kinetics5. In addition, when microorganisms are grown on a specifically chosen labeled substrate (e.g. 1-13C glucose) during a metabolic labeling experiment, the isotopomer distribution of intracellular compounds can be used to calculate the absolute flux through specific reactions of interest

In this work, the QTRAP® 5500 system (a hybrid triple quadrupole linear ion trap mass spectrometer) was used to implement both quantitative and qualitative workflows aimed at measuring anionic and polar compounds of intracellular metabolism.

Key Features of the QTRAP[®] 5500 System for Qualitative and Quantitative Metabolomics

Targeted Metabolomics - FluxOMICS

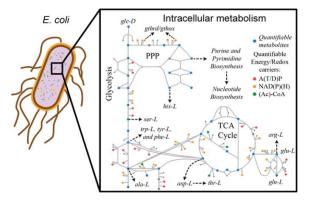
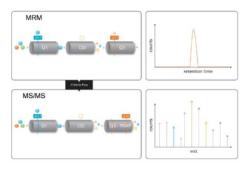
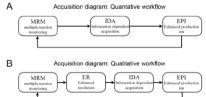


Figure 1. Metabolomics of Intracellular Pathways for Investigations into the Biochemistry of Microorganisms. High flux pathways such as those shown are key to generating a biological picture and targeted metabolomics strategies provide a robust quantitative strategy for monitoring changes.

11 © 2016 AB Sciex




Targeted Metabolomics - FluxOMICS

Metabolite	Q1	Q3	RT	DP	EP	CE	CXP	MS Window	Quantifier
L-Arginine-UC13	179	136	0.7	-125.3	-10	-19.1	-6.9	30	1
L-Arginine	173	131	0.7	-125.3	-10	-19.1	-6.9	30	1
L-Ornithine-UC13	136	89	0.7	-61.8	-10	-17.4	-7.9	30	1
L-Ornithine	131	85	0.7	-61.8	-10	-17.4	-7.9	30	1
L-Asparagine-UC13	135	118	0.92	-89.7	-10	-16.1	-7	30	1
L-Asparagine	131	114	0.92	-89.7	-10	-16.1	-7	30	1
L-Asparagine	131	95	0.92	-51	-10	-17.1	-11.3	30	2
L-Serine-UC13	107	76	0.92	-72.8	-10	-15.9	-8.7	30	1
L-Serine	104	74	0.92	-72.8	-10	-15.9	-8.7	30	1
L-Serine	104	42	0.92	-73.9	-10	-18.7	-12.2	30	2
L-Citrulline-UC13	180	136	0.93	-76.4	-10	-19.1	-6.4	30	1
L-Citrulline	174	131	0.93	-76.4	-10	-19.1	-6.4	30	1
L-Glutamine-UC13	150	132	0.93	-19.9	-10	-13.3	-17.7	30	1
L-Glutamine	145	127	0.93	-19.9	-10	-13.3	-17.7	30	1
L-Glutamine	145	101	0.93	-20.2	-10	-14.3	-6.8	30	2
Hexose_Pool_fru_glc-D-UC13	185	61	0.94	-36.2	-10	-23.1	-5.8	30	1
Hexose_Pool_fru_glc-D	179	59	0.94	-36.2	-10	-23.1	-5.8	30	1
Hexose_Pool_fru_glc-D	179	89	0.94	-37.4	-10	-12.9	-6.7	30	2
L-Cystine-UC13	245	123	0.94	-59.7	-10	-17	-14.8	30	1
L-Cystine	239	120	0.94	-59.7	-10	-17	-14.8	30	1
L-Threonine-UC13	122	76	0.94	-46.5	-10	-14.2	-6.7	30	1
L-Threonine	118	74	0.94	-46.5	-10	-14.2	-6.7	30	1
L-Alanine-UC13	91	46	0.95	-14.2	-10	-19.9	-14	30	1
L-Alanine	88	45	0.95	-14.2	-10	-19.9	-14	30	1
L-Alanine	88	42	0.95	-11.2	-10	-19.2	-17	30	2
Cytidine-UC13	251	113	1.15	-100	-4	-16.1	-5.2	30	1
Cytidine	242	109	1.15	-100	-4	-16.1	-5.2	30	1
L-Histidine-UC13	160	143	1.15	-56.7	-10	-18.8	-14.8	30	1
L-Histidine	154	137	1.15	-56.7	-10	-18.8	-14.8	30	1
L-Histidine	154	93	1.15	-57.6	-10	-22.8	-9	30	2
Uracil-UC13	115	43	1.15	-100	-10	-26	-7	30	1
Uracil	111	42	1.15	-100	-10	-26	-7	30	1
5-Aminoimidazole-4-carboxamide riboside-UC13	266	129	1.2	-100	-10	-22	-9	30	1

Targeted Metabolomics - FluxOMICS

© 2016 AB Sciex

Targeted Metabolomics - FluxOMICS

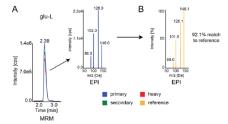


Figure 3. Simultaneous Quantitative Analysis with Qualitative Confirmation of L-Glutamate using the QTRAP[®] 5500 System. A) The primary and secondary transitions (blue and green) for glu-L are monitored, along with the uniformly heavy carbon labeled analog (red). A full scan MS/MS spectrum (EPI scan) is triggered when the primary and secondary transitions reach a predefined threshold. B) To confirm the identity of the MRM signal, the MS/MS was matched with a greater than 90% match to the reference spectrum (taken for pure standards for glutamate).

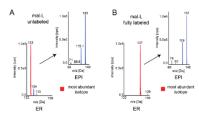
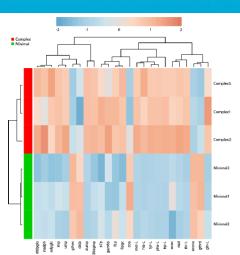



Figure 4. Qualitative Method for Characterizing the Isotopomers, Enabled by the QTRAP 5500[®] System. The advantage of the qualitative method is highlighted here in this example measuring unlabeled and fully labeled malic acid (mal-1) in E. coli. Several transitions corresponding to the isotopomer distribution are monitored per compound. An Enhanced Resolution (ER) scan is triggered when one of the isotopomer transitions reaches a predefined threshold and provides MS and isotope ratio information. An EPI scan is also triggered and provides information regarding the location of the heavy label (if present).

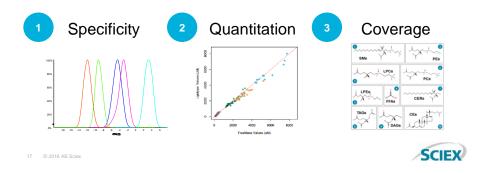
SCIEX

Targeted Metabolomics - FluxOMICS

Figure 6. Heat Map of Absolute Metabolite Level Differences Between *E. coli* Grown in Minimal Media and Complex Media. The top 25 most significant metabolites (x-axis) are clustered (Pearson's R, complete linkage) according their significance and fold-change (Students t-test). The media conditions (y-axis) are clustered (Pearson's R, complete linkage) according to similarity in metabolite level of the top 25 most significant metabolite changes.

15 © 2016 AB Sciex

The Lipidyzer[™] Platform: A Revolutionary Tool for Understanding the Role of Lipids in Disease

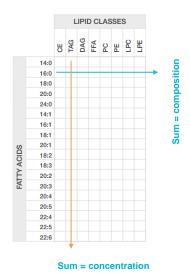

For Research Use Only. Not for use in diagnostic procedures. RUO-MKT-11-4185-A

Industrializing Lipidomics

Lipidyzer™ Platform

- Robust MS System
- Class separation using DMS
- Unique internal standard strategy with validated kits
- Data Visualization including heat maps, box & whisker plots, etc

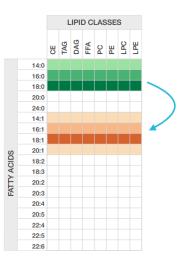
Demonstrating the Power of Lipidyzer™ Platform


Benefits

- Specificity Differential Mobility Spectrometry (DMS)
- Eliminating Quantitative Bias Novel Internal Standards
- Coverage Complex Lipid Metabolism
- Sensitivity and Precision Assay
- Robustness Assay and Platform
- Ease of Use Platform
- Samples Sets used for Biological Validation

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)

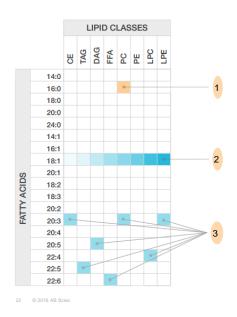


© 2016 AB Sciex

SCIEX

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes


Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes
- When lipid class metabolism is altered there is the ability to change all members of the class

21 © 2016 AB Sciex

What is needed from a Lipid Platform

1) Specificity

 A non-specific method (e.g. PC 36:2) does not allow mapping to the elements of the matrix

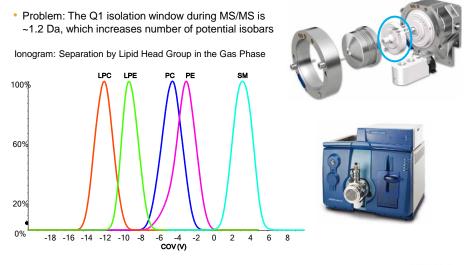
2) Quantitation

- A non-quantitative approach does not allow accurate summing of the rows and columns
- 3) Comprehensive Coverage
 - A partially complete matrix is difficult to interpret

Broad Range of IS to Normalize Quantitative Data

 Diversity of fatty acid chain lengths and degrees of unsaturation result in differential fragmentation efficiency which impacts quantitation

	STRUCTURE	FATTY ACID	POS	%
	·····	FA16:1 - Palmitoleic acid	sn-2	5
	i.	FA18:1 - Oleic acid	sn-2	20
	,,,,,,,,	FA18:2 - Linoleic acid	sn-2	20
	ii.	FA18:3 - α-Linoleic acid	sn-2	5
	·····	FA20:3 - Dihomo-γ-linoleic acid	sn-2	5
		FA20:4 - Arachidonic acid	sn-2	20
	~~~~~	FA20:5 - Eicosapentaenoic acid	sn-2	5
2		FA22:4 - Eicosatetraenoic acid	sn-2	5
	~~~~	FA22:5 - Docosapentaenoic acid	sn-2	5
	~~~~	FA22:6 - Docosoahexaenoic acid	sn-2	10
		d916:0 - Labeled palmitic acid	sn-1	100


· Multiple IS that reflect the diversity of lipid molecular species

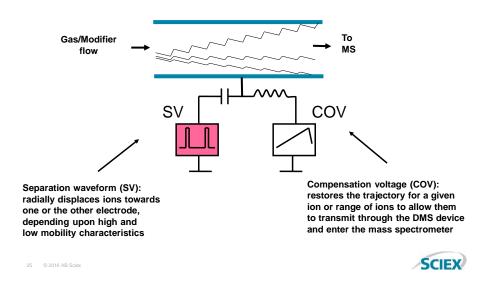
· Each lipid class has multiple internal standards at concentrations that reflect those found in biology

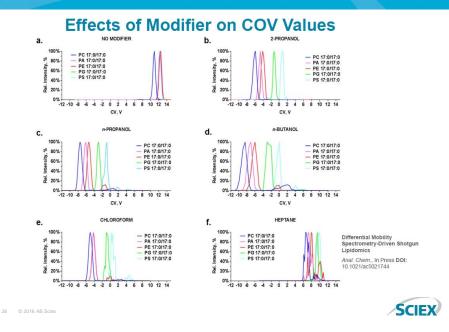
23 © 2016 AB Sciex

### Specificity Offered by SelexION[®] Technology

**Removal of Isobaric Interferences** 



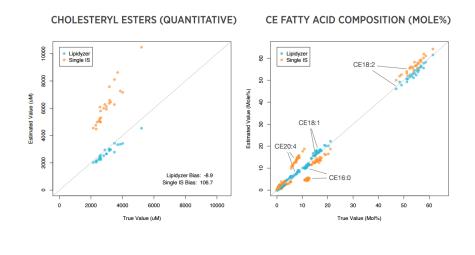

Differential Mobility Spectrometry-Driven Shotgun Lipidomics Anal. Chem. 2014. 86. 9662-9669 10.1021/ac5021744




SCIEX

# How Does SelexION™ Technology Separate lons?

Differential Mobility Spectrometry (DMS) separates molecules using planar geometry






### Separation of Lipid Classes Using SelexION[™] Technology

### The Lipidyzer Eliminates Quantitative Bias

Multiple internal standards per class provide accurate quantitation



27 © 2016 AB Sciex

SCIEX

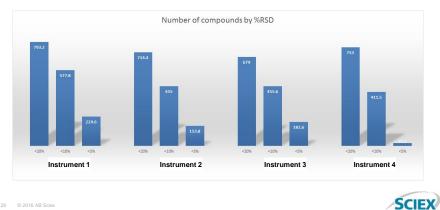
### Full Coverage of Complex Lipid Metabolism

**Coverage and Depth** 

- Over 1100 molecular species across 13 lipid classes
- Lipidyzer[™] Platform provides 6 measurements:
  - 1. Lipid Class Concentration
  - 2. Lipid Species Concentration
  - Fatty Acid Concentration
     Lipid Class Composition
  - Lipid Class Composition
     Lipid Species Composition
  - 6. Fatty Acid Composition

Fraction	Lipid Classes	Number of Species*
Neutral Lipids	Triacylglycerols (TAG)	502
	Diacylglycerols (DAG)	67
	Free Fatty Acids (FFA)	28
	Cholesterol Esters (CE)	34
Polar Lipids	Phosphatidylcholines (PC)	161
	Phosphatidylethanolamines (PE)	233
	Lysophosphatidylcholines (LPC)	28
	Lysophosphatidylethanolamines (LPE)	28
	Sphingomyelins (SM)	16
	Ceramides (CER)	56

*The Ceramides listed above includes the further three classes, DCER, HCER and LCER



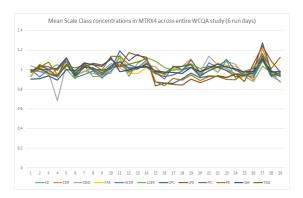



#### Lipidyzer[™] Platform Sensitivity and Precision

5 Day Study

 Validated across 4 instruments and 3 labs the instruments detected similar numbers of lipid species and with similar precision




>675 lipid species with RSD <20% in this control sample</li>

29 © 2016 AB Sciex

### Lipidyzer[™] Platform Robustness

Precision: 6 Day Study in Plasma (Total Class Concentration)

#### 11/13 Classes <10% RSD over 6 days</li>



Lipid Class	%RSD
Cholesterol esters (CE)	4.7
Ceramides (CER)	6.4
Diacylglycerols (DAG)	9.1
Free Fatty Acids (FFA)	4.5
Hexosylceramides (HCER)	5.8
Lactosylceramides (LCER)	6.9
Lysophosphocholines (LPC)	9.9
Lysophosphoethanolamines (LPE)	10.9
Phosphocholines (PC)	5.1
Phosphoethanolamines (PE)	8.9
Sphingomyelins (SM)	5.4
Triacylglycerols (TAG)	5.1
Dihydroceramides (DCER)	29.5*

*Note: DCERs are present at exceedingly low levels in plasma

SCIEX

#### Ease of Use

Lipidomics Workflow Manager Software

- Automates the entire workflow
  - Kit registration (concentration info)
  - System tuning and testing
  - Experimental design, data collection and processing
- Data Visualization including heat maps, QC charts and quantitative data tables



1000						NUTCON HER TRATING			System S	uitability T	est Result		
20.00	(8)2.0	1000002312	1000	LMSTELE20001		1.0043	-0.3775	and a second					
	CR(14.0)	HM2805725		LMS781820004	1.4199	1.1559	1.2284			Average I	tensity Result:		
	CR(541)	HMDE00357		UM\$781820621	-3.0214	-0.7978	3,7475			Average in	itensity nesure		
	C8:1541	HMD860657		UM5781820827	1,3259								
	C80549	HMD800885	C11251		1.1587				Class	Name		<b>T</b> 1 1 1 1 1 1 1 1	
	(8(19.1)	HMD800655		LM5781820806	1,5567				Class	Name	Intensity	Threshold Intensity	Result
	CB(17.0) CB(18.0)	HM280059		LMSTELE20826	1,3552				CE	CE(16:0)	6433.75	100	PASS
	CEDBO	HMDRODER		LMST21220007	1.3004								
	(6192)	HNDROGED	C15481		1.004				CE	CE(16:1)	8527.25	1000	PASS
	(8583)	HMDED0270		LM57E1020809	1.5182								
	C01044				-0.8704	-0.3226	2,8962		CE	CE(18:1)	26758	1000	PASS
	CR(20.0)	HM2805740		LMSTELE20ELD	-1.3611	-0.7853	-0.9130	Mean Fold	CE	CE(18:2)	79762.75	10000	PASS
	CE(20.1)	HMD805193		UMSTRUE20EL1				IVIEAN FUIL	CE.	CE(10:2)	19102.15	10000	PA33
	CE(20-2)			UMST01020012	33452	1.6873			CE	CE(20-2)	9500.50	1000	DACC
	C8(20.3)	HM2805735		UM5781820813	1.2579			Change					
	CE(20.4)	HM0806726		UMSTRUBBORL4	1.3349			enange					
	(8,20.5)	HM2805731		UNSTRUBBORLS	1.4358								
	CB(22.0)	HMD806727		DASTELECORIE 6									
	(8223)	HM0800972		UMS781820825		6.7762	0.6454				I Pass	s / Fail	
	CB(224) CB(224)	HM2806737 HM2806729		UMS7818208L7		-5.9859	0.4394						
	(8/224)	HM0800729		LMS701020031	1,9222	1.550	1.4113						
	(8/22.6)	HM2805733		LAASTELECOGLE	13422	10706							
	CE240	HM2800276		Des-resources	12401	10.00	1.1.041						-

### Biological Validation of Lipidyzer™ Platform

#### Sample Set 1

- Preeclampsia a leading cause of maternal perinatal morbidity and mortality
  - Shallow invasion of cytotrophoblast (CTB) cells into mother's uterus
  - Failed vascular transformation of the spiral arteries is the hallmark of the placental defects in preeclampsia
  - Response: high blood pressure & proteinuria
- Understand normal CTB development and how this goes awry in preeclampsia
- Pilot study of 12 preterm labor (PTL) vs 12 severe preeclampsia women (SPE).
- Gestational age-matched plasma samples, 25-37 wks
- Validated TAGs and DAGs upregulation in SPE

nificance	e cut-off			Appl	v		
05		_					
		Color range	from -2 to 2	Ch	oose Export - P	ease Select ~	
CLASS	SUB_CLASS	CHEMICAL, NAME	HMC6	REGG	URD_MAPS	SPE_PTL/PVAL)	SPE PTU
TAG		TAG54/5-FA221	HMDB02068	C08316	LMFA01030089		3.0157
		DAG(18:1/18:2)	HMD807219		LMGL02010056	0.0213	2.3030
DAG		DAG(18:1/22:5)	HMD607236		LMGL02010215	0.0092	
		DAG(18:1/18:1)	HMD807218		LMGL02010049	0.0097	
		TAG56:6-FA18:3				0.0257	
TAG		TA0567-FA183	HMD001388	006427	LMFA01030152	0.0207	
		TAG51:4-FA16:1	HMD603229	008352	LMFA01030056	0.0165	
		DAG(16:1/18/2)	HMD007132		LMGL02010031	0.0276	
DAG		DAG(18:1/224)	HMD807234		LMGL02010204		2.1065
1		DAG(16:1/18:1)	HM0007131		LMGL02010026	0.0130	2.1045
TAG		TAG51:3-FA15:0	HMD800826	C16537	LMFA01010015	0.0364	
DAG		DAG(16:1/226)	HM0807150		LMGL02010174		2.0730
		TAG51/2-FA181	HMD800207	C00712	LMFA01030002	0.0213	2.0704
		TAG51/2-FA15/0	HMDB00826	C16537	LMFA01010015	0.0283	
TAG		TAG51/3-FA16/1	HMDB03229	006362	LMFA01030056	0.0282	
TAG		TAG58/3-FA18/1	HMD800207	C00712	LMFA01030002	0.1301	2.0450
		TAG52:4-FA20.0	HMD602212	006425	LMFA01010020	0.0424	2.0428
		TAG52:3-FA16:1	HMD603229	006362	LMFA01030056	0.0317	
DAG	ester	DAG(16:0/22:5)	HMD807120		LMGL02010150	0.0246	
DAG		DAG(18:2/18:3)	HMD607250		LMGL02010071	0.0271	
		TAG52:4-FA18:1	HMDB00207	C00712	LMFA01030002	0.0544	1.9971
					LMFA01030120		1.9956

Professor Katherine Williams & Susan Fisher, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco (UCSF).



### Biological Validation of Lipidyzer™ Platform

Sample Set 2

- Patients with hypertriglyceridemia (high triacylglycerols, TAGs x14), hypercholestberolemics (high cholesteryl esters, CEs x14) and controls (x12)

   40 samples total.
- Validated TAG changes with clinical findings
- Validated CE changes with clinical findings

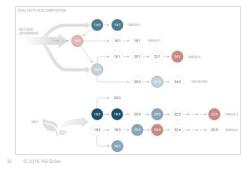
CHEMICAL_NAME	HMDB	KEGG	LIPID_MAPS	HIGH_CE_NORMAL(FOLD)
CE(18:4)	-			5.4032
CE(14:1)	HMDB10367		LMST01020021	4.4896
CE(16:1)	HMDB00658		LMST01020006	3.8689
CE(14:0)	HMDB06725		LMST01020004	3.1034
CE(18:3)	HMDB10370		LMST01020009	2.9469
CE(20:5)	HMDB06731		LMST01020015	2.8251
CE(12:0)	HMDB02262		LMST01020001	2.3344
CE(20:3)	HMDB06736		LMST01020013	2.2789
CE(20.2)			L MST01020012	2 1063

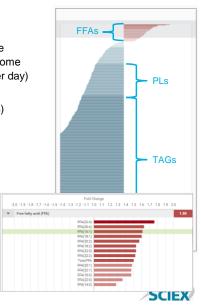
33 © 2016 AB Sciex



### Biological Validation of Lipidyzer™ Platform

Sample Set 2 Continued


• Novel findings in down regulated HCER & LCER highlighting altered glycosphingolipid metabolism




### **Biological Validation of Lipidyzer**

Sample Set 3

- Weight Loss Study
  - Clinical manifestation of inflamed adipose tissue
  - Insulin resistance  $\rightarrow$  leading to metabolic syndrome
  - Calorie-restricted diet over 8 wks (900 kCals per day)
  - Serum taken before and after weight loss
- Decreased lipogenesis (including decreased TAGs)
- Increased FFAs





#### **Quickest Route to Success**

Comparison to a Traditional Discovery Platform

- Lipid changes with age that are prevented by dietary restriction may be responsible for agerelated neuronal damages, decreased cognition functions and increased neurological disorders
- Aging Study Young (10), old (10) and old dietary-restricted (8) mice*
- Discovery data already collected on a QExactive compared to Lipidyzer[™] Platform
- QE data collection & processing and 1-2 weeks
- Lipidyzer™ Platform data collection & processing less than 1 day

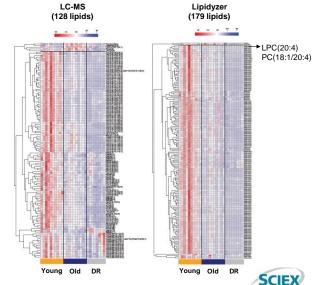
Identified lipids with non-zero values in more than 50% of the samples

Lipid Class	LC-MS	Lipidyzer		
TG	96	226		
SM	27	12		
SiE	1	0		
PS	7	0		
PI	15	0		
PE	32	30		
PC	101	41		
LPE	7	5		
LPC	34	17		
LdMePE	7	0		
dMePE	3	0		
DG	6	12		
ChE	9	24		
CerG2GNAc1	1	0		
CerG1	3	0		
Cer	3	2		
FFA	0	26		
TOTAL	351	395		

Professor Mike Synder & Kevin Contrepois, Department of Genetics, Stanford



*non-validated matrix 36 © 2016 AB Sciex


### **Quickest Route to Success**

#### Significant changes between Young, Old and Calorie Restricted

- Univariate statistical analysis
  - Non-parametric Wilcoxon t test – FDR corrected q value < 0.05</li>
  - Fold change > 1.5

#### Lipidyzer[™] demonstrated:

- Fastest route to successful data ready for interpretation
- Larger number of detected species
- Quantitative data on all species detected
- Allows mapping data to biochemical pathways



# 37 © 2016 AB Sciex

### Conclusions

#### Demonstrating the Power of Lipidyzer[™] Platform

- Specificity Differential Mobility Spectrometry (DMS)
- · Eliminating Quantitative Bias Novel Internal Standards
- Coverage Over 1100 Molecular Species across 13 lipid classes
- Sensitivity and Precision Quantitate ~700 species <20%CVs</li>
- Robustness <10%CVs over 6 days</li>
- Ease of Use Lipidomics Workflow Manager
- Biological Validation of the Lipidyzer Platform
  - Preeclampsia Pilot Study
  - Hypertriglyceridemia Study
  - Weight Loss Study
  - Aging Pilot Study



### Acknowledgements

#### **SCIEX**

- Pauline Vollmerhaus
- Eva Duchoslav
- Paul Baker
- Scott Hamilton
- Marjorie Minkoff
- Larry Campbell
- Yves Le Blanc
- Aaron Hudson
- Mark Cafazzo

#### METABOLON

- Steve Watkins
- Alex Conner
- Annie Evans
- Richard Robinson
- UyenThao Nguyen
- Joseph Yu
- Luke Miller
- Sarada Tanikella
- Peter Zhu
- Corey DeHaven

#### **Avanti Polar Lipids**

- Walt Shaw
- · Lisa Connelly

#### **Collaborators**

- Katherine Williams &
- Susan Fisher (UCSF)
- Andy Dannenberg (Weill College Medicine)
- Kevin Contrepois &
- Mike Snyder (Stanford)

#### Legal Acknowledgements:

For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license. RUO-MKT-11-4185-A © 2016 AB SCIEX.

